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 The design of Digital Filter involves five steps: 

  Specifications according to filter requirements. 

 Calculations of suitable filter coefficients 

 Representation of filter by a suitable structure 
(realization) 

 Analysis of the effects of finite word length on  
filter performance. 

 Implementation of filter in software and/or  
hardware. 



 Discrete-time IIR filter design is done  
using analog filter techniques: 

1. Analog IIR filter design methods have  
simple closed form solutions; 

2. Design examples have existed for years. 

3. Direct design of IIR filters has  
traditionally been avoided 

4. Direct design of FIR filters is possible. 

Discrete Time filter Design (Coefficient  

calculation) 
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DT IIR filter design (Coefficient calculation) 
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Traditional Analog Filter Design 
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Traditional Analog Filter Design 
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Butterworth Design 
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Butterworth Design 
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Butterworth Design 
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• Butterworth Design 
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Butterworth Design 
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To get a stable and causal filter, 

choose Hc(s) to implement the poles in the left-hand plane. 

• Butterworth Design 
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Chebyshev Type I 
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Chebyshev Type II 
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 Most widely used methods: 

 Pole-zero placement 

 Impulse Invariance 

 Bilinear Transform 

 IIR filter design (Coefficient calculation) 

18 



1. IIR Filter design: Impulse-Invariant Method 

• basic principle: sampling of impulse response of an  

analogue filter, 

• mapping: HA(p) -> H(z), 

• resulting filter implementation as a parallel bank of two-pole 

filter, 

• aliasing effect following from sampling process and its impact, 

19 



       Impulse-Invariant Method 
(Impulse Invariant Transformation) 

Objective: to design an IIR filter having an impulse  

response h(n) as the sampled version of the  

impulse response of the analogue filter hA (t): 

hA (t)  hA (nT )  h(nT )  h(n) n 0,1, 2,... 

where T is the sampling interval. 

 

In consequence of this result, the frequency response of  

the digital filter is an aliased version of the frequency  

response of the corresponding analogue filter. 
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Let the transfer function of the analogue filter be given: 

L y(t) 
Lx(t) 

B( p) 
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Let us assumed that the order M of the numerator is less  

that the order N of the denominator and that all poles  of 

HA ( p) are simple. If the poles of HA ( p) are not simple,  

the discussion in this section can be appropriately  

modified. Then, we rewrite the transfer function of the  

analogue filter in its partial expansion, as follows 
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where (dk ) is the location of the k-th pole and 

ck  HA ( p)( p  dk ) pdk 
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  
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The impulse response of the digital filter h(nT): 
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Transfer function of the digital filter: 
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N 
k 
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dkT z1 
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k 1 

Transfer function of  

the digital filter: 

Comparing HA(p) and H(z) it can be seen that H(z) can  

be obtained from HA(p) by using the mapping relation: 
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With the previous given expressions for the transfer  

function H(z), the IIR filter is easily realized as a  

parallel bank of single-pole filters: 

N 
k 

c 
dkT z1 

1  e 
H (z)   

k 1 

26 



With the previous given expressions for the transfer 
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function H(z), the IIR filter is easily realized as a  

parallel bank of single-pole filters. 

If some of poles are complex-valued, they may be  

paired together and combined to form two-pole filter  

sections with real-valued coefficients: 

k 

ck  

p  d 

ck 

1  z1e dkT 

   

k 

   
ck 

1  z1e dkT 
k 

ck  

p  d 
k 

ck ck   
p  d 

ck   

1  z1e dkT 

ck 

1  z1e dkT 
p  d 

 

  



With the previous given expressions for the transfer  

function H(z), the IIR filter is easily realized as a  

parallel bank of single-pole filters. 

If some of poles are complex-valued, they may be  

paired together and combined to form two-pole filter  

sections with real-valued coefficients. 

In addition, two factors containing real-valued poles  

may be combined to form two-pole filters with real-  

valued coefficients. 
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With the previous given expressions for the transfer  

function H(z), the IIR filter is easily realized as a  

parallel bank of single-pole filters. 

If some of poles are complex-valued, they may be  

paired together and combined to form two-pole filter  

sections with real-valued coefficients. 

In addition, two factors containing real-valued poles  

may be combined to form two-pole filters with real-  

valued coefficients. 

Consequently, the resulting filter may be realized as  

a parallel bank of two-pole filters with real-valued  

coefficients. 
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Impulse Invariance Mapping 
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 Impulse invariance mapping is z = e s T 

Laplace Domain Z Domain 

Left-hand plane  

Imaginary axis 

Inside unit circle  

Unit circle 

1 

Im{z} 

Re{z} 

s = -1  j  z = 0.198  j 0.31 (T = 1 s) 

s = 1  j  z = 1.469  j 2.287 (T = 1 s) 

1 

-1 

Im{s} 

 

 

-1 

1 

 

Re{s} 

s  j 2  f 

Right-hand plane Outside unit circle 



1.Poles on the jΩ axis in the s-plane correspond to  
poles on the unit circle in the z-plane. 

2.Poles in the left half of the s-plane correspond to  
poles inside the unit circle in the z-plane. 

Hence stable and causal continuous-time filters will  
produce stable and causal discrete-time filters. 

Discrete-Time IIR filter design 
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Consequences: 

  00  r  1   0r  1   0r  1 
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a) 

Then, the left-half of p-plane is mapped inside the  

unite circle in z-plane and right-half of p-plane is  

mapped into points that fall outside the unit circle  

in z-plane. This is one of the desirable properties  

of a good p -> z mapping. 

 

 

b)  j -axis is mapped into the unit circle in z-plane  

as indicates above. 



, the is sampled with sampling frequency S 
 2 F 

S 

spectrum of the sampled signal is given by the following  

expressions: 

H ( j)  FT hA nT   FT hA n / FS  

Aliasing Effect: 

When a continuous time signal hA (t) with spectrum HA () 

1 
H ( j)  

 

T k  

 HA  j  jkS  

1  

H ( f )   HA  f  kFS  where f  / 2 
T k  

Aliasing occurs if the sampling frequency FS is less then 

twice the highest frequency contained in hA (t ). 
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1. The digital filter will possess (approximately) the  

frequency response characteristics of the corresponding  

analogue filter if the sampling interval T is selected  

sufficiently small to avoid completely or minimize the  

effects of aliasing. 
 

2. The impulse invariance method is inappropriate for  

designing high-pass filters or stop-band filters due to  spectrum 

aliasing that results from the sampling process. 

Aliasing effect impact: 
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Comments on j -axis mapping:   T 

35 

a) The mapping of j -axis into the unit circle is not  

one-to-one. 

 

b)  /T     /T        

 
c) Mapping of the adjacent strips - frequency interval: 

 /T    3 /T        

d) General case: 

(2k 1) /T    (2k 1) /T        
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p-plane 

 /T 

  Re[ p] 

 /T 

Mapping: z  e pT 
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The mapping of strips of the width 2 3 /T 
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Summary on filter design with Impulse Invariant Method : 

1. Digital filter specification: P ,S ,1 and 2 

2. Transformation of requirements to the digital filter  

to the analogue filter: 

 and  
1 2 

   
S S 

   /T    
P p 

3. The analogue filter design: 
N 

 
k 1 

  k  
A 

H ( p)  
k 

c 

p  d 

4. The analogue filter conversion to the digital filter: 
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Comment on scaling factor application (T): 

 

The frequency response of the filter obtained by impulse  

invariant transformation is given by 

1 j 
 

H (e )   HA   kS  
T k  

Under condition that 

HA   kS  ~ 0 for k  0 

we can obtain: 

A 
H (e j ) ~ 

1 
H 

T 
 
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If it is desired to get a digital filter with the same gain  

as the analogue filter possesses, it is necessary to  

transform the expression for H(z) originally given by 
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Butterworth Filter Design with Impulse  
Invariance 
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Butterworth Filter Design with  
Impulse Invariance 
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• 
To avoid aliasing, we need a one-to-one mapping  

from the s-plane to the z-plane. 

Bilinear Transform 
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• Bilinear Transform 
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• Bilinear Transform 
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1. Perform frequency prewarp to obtain the  
corresponding analog filter specs (pick any T) 

 

2. Design the analog filter Hc(s) using any one of  
the analog filter prototypes. 

3. Transform Hc(s) to H(z). 

Bilinear Transform 



Bilinear Transform 
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p-plane 

j  j Im[ p] 

0 

  Re[ p] 

T  
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Summary on digital filter design with 

Bilinear Transformation: 
1. Digital filter specification: P ,S ,1 and 2 
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3. The analogue filter design: HA ( p) 

 
4. The analogue filter conversion to the digital filter: 

H (z)  HA  p 2 1z1 

p 
T 1 z1 

1 2 
 and  S S 

2. Transformation of requirements to the digital filter  

to the analogue filter: 

P p 
       

 2 
tan 

 

T 2 
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