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Filter Design Steps

= The design of Digital Filter involves five steps:
= Specifications according to filter requirements.
= Calculations of suitable filter coefficients

= Representation of filter by a suitable structure
(realization)

= Analysis of the effects of finite word length on
filter performance.

« Implementation of filter in software and/or
hardware.



Discrete Time filter Design (Coefficient
calculation)

Discrete-time IIR filter design is done
using analog filter techniques:

. Analog IIR filter design methods have
simple closed form solutions;

. Design examples have existed for years.

. Direct design of IIR filters has
traditionally been avoided

. Direct design of FIR filters is possible.
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Traditional Analog Filter Design

e Butterworth filters

e Chebyshev filters

e Elliptic filters



Traditional Analog Filter Design

Butterworth Low-Pass: | H (5€2)|
1
1—6,
| YOS | ..
I
QP ﬂs
Chebyshev (I) Low-Pass: |H(5€2)|
1
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. || S S—
QP 98
Elliptic Low-Pass: |H(52)]
1
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Butterworth Design

Cc A

on = H (GO H () = H(jQ)He(—jQ)

L+ (%)

|HC(JQ)|2 —

k=0,1,...,2N—1

To get a stable and causal filter,

choose H.(s) to implement the poles in the left-hand plane.




Butterworth Design

1 1
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where s; and s; are on the left plane



Butterworth Design

POLES OF |H(s)|”
Im(s) N=4 lm(s)
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Butterworth Design

0.707

Butterworth filters are fully speciﬁed by the cutoff frequency (2.
and the filter order NV

10



Amplitude |H(jQ)|

Butterworth Design

1
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H(jQ)|? =
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e poles: s = (—1)1/2NV Q.

11



Butterworth Design

Chebyshev filters

Type I Type II

Def H(Q)|? = ; H(jQ)|* = ,

Passband | Ripple from 1 to \/1/1 e Monotonic

Stopband Monotonic Ripple \/1/(1 +1/£2)
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Chebyshev Type 1

Chebyshev Type |
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Chebyshev Type 11

Chebyshev Type 11
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IIR filter design (Coefficient calculation)

= Most widely used methods:

= Pole-zero placement
= Impulse Invariance
= Bilinear Transform
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1. IR Filter design: Impulse-Invariant Method

 basic principle: sampling of impulse response of an
analogue filter,

« mapping: Ha(p) -> H(2),
* resulting filter implementation as a parallel bank of two-pole
filter,

« aliasing effect following from sampling process and its impact,

19



Impulse-Invariant Method
(Impulse Invariant Transformation)

Objective: to design an IIR filter having an impulse
response h(n) as the sampled version of the
Impulse response of the analogue filterh, (t):

h,(t) =h,(nT)=h(nT)=h(n) n=0,12,..

where T Is the sampling interval.

In consequence of this result, the frequency response of
the digital filter i1s an aliased version of the frequency
response of the corresponding analogue filter.
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Let the transfer function of the analogue filter be given:

o 0] _Bp) 2"
A L[x®] A(p) ZN:akpk



et us assumed that the order M of the numerator Is less
that the order N of the denominator and that all poles of
H,( p) are simple. If the poles of H, ( p) are not simple,
the discussion In this section can be appropriately
modified. Then, we rewrite the transfer function of the
analogue filter in its partial expansion, as follows

2.bpt
Ha(p)= K2 —— =D

where (—d, ) is the location of the k-th pole and

C,=Ha(p)(p+dy)

p=—dy



The impulse response of the analogue filter h, (1) :

(0 =L [H,(P)]-

The impulse response of the digital filtef h(nT):

h(n) = h(nT) = h, (nT )= ig g 4T

nN=012.3,...,0
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Transfer function of the digital filter:




Transfer function of
the analogue filter:

Transfer function of
the digital filter:
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With the previous given expressions for the transfer
function H(z), the IR filter is easily realized as a
parallel bank of single-pole filters:

H(z) = Z _dkT

26



With the previous given expressions for the transfer
function H(z), the IR filter is easily realized as a

parallel bank of single-pole filters.

f some of poles are complex-valued, they may be
paired together and combined to form two-pole filter
sections with real-valued coefficients:

Cy Cy
p+d, =~ 1-z'e ™
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With the previous given expressions for the transfer
function H(z), the IR filter is easily realized as a
narallel bank of single-pole filters.

f some of poles are complex-valued, they may be
paired together and combined to form two-pole filter
sections with real-valued coefficients.

In addition, two factors containing real-valued poles
may be combined to form two-pole filters with real-
valued coefficients.
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With the previous given expressions for the transfer
function H(z), the IR filter is easily realized as a
parallel bank of single-pole filters.

f some of poles are complex-valued, they may be
paired together and combined to form two-pole filter
sections with real-valued coefficients.

In addition, two factors containing real-valued poles
may be combined to form two-pole filters with real-
valued coefficients.

Consequently, the resulting filter may be realized as
a parallel bank of two-pole filters with real-valued
coefficients.
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Impulse Invariance Mapping

= Impulse invariance mappingisz = esT

Im{s} Im{z}
X L0 O

 Re{s} / \
B 1 X Re{z}
S \y 1
1+j=7=01984]0.31(T=1s)

S

s=1+j =2z=1469+j2.287(T=15)

s=j2rf Laplace Domain  Z Domain

Left-hand plane  Inside unitcircle
Imaginary axis Unit circle

Right-hand plane Outside unit circle




Discrete-Time IIR filter design

s-plane z-plane

Y
1/

H.(s) <> H(z)
1.Poles on the jQ axis in the s-plane correspond to
poles on the unit circle in the z-plane.

2.Poles in the left half of the s-plane correspond to
poles inside the unit circle in the z-plane.

Hence stable and causal continuous-time filters will
oroduce stable and causal discrete-time filters.




Consequences:

a) 0<0-0<r<l o0>0->r>1 o0=0->r-=1

Then, the left-half of p-plane i1s mapped inside the
unite circle in z-plane and right-half of p-plane is
mapped into points that fall outside the unit circle

In z-plane. This iIs one of the desirable properties
of a good p -> z mapping.

b) JQ -axis Iis mapped into the unit circle in z-plane
as indicates above.

32



Aliasing Effect:

When a continuous time signal h, (t) with spectrum H,(€2)
Is sampled with sampling frequency Qg = 27st , the
spectrum of the sampled signal is given by the following
expressions:

H(jQ) = FTI|h(nT)l= FTI[h(n/FS)]]

H(f):%i H,(f —kFs) where f=0Q/27
K=—00

Aliasing occurs if the sampling frequency Fis less then
twice the highest frequency contained in hy(t ).



Aliasing effect impact:

1. The digital filter will possess (approximately) the
frequency response characteristics of the corresponding
analogue filter if the sampling interval T is selected
sufficiently small to avoid completely or minimize the
effects of aliasing.

2. The Impulse Invariance method Is inappropriate for
designing high-pass filters or stop-band filters due to spectrum
aliasing that results from the sampling process.



Comments on jQ -axis mapping: w=QT

a) The mapping of jJQ -axis into the unit circle isnot
one-to-one.

b) 7IT<Q=7IT >-7<w<x

c) Mapping of the adjacent strips - frequency interval:

7lT<QL37xIT - —7<w<rx

d) General case:
Rk -D)zlT<Q <2k +1)x/T > —n<w<rx

35
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Summary on filter design with Impulse Invariant Method
1. Digital filter specification: @, ,®s,0, ando,

2. Transformation of requirements to the digital filter
to the analogue filter:

Q=w/T —— COP—>Qp a)S—>QS 51and52

3. The analogue filter design:

4. The analogue filter conversion to the digital filter:

H(z) = TZ

1 e—dkT Z—l



Comment on scaling factor application (T):

The frequency response of the filter obtained by impulse
Invariant transformation is given by

H(e"‘”)=%ZHA(Q—kQS)

Under condition that
H, (Q-kQg )~ 0for|k|>0
we can obtain:

- 1
H(el®)~ = H
(e'?) " A (Q)
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If it is desired to get a digital filter with the same gain
as the analogue filter possesses, It IS necessary to
transform the expression for H(z) originally given by

11— /A
In the form
N Ck
H(z)=T
@ =T iy
Then:

H(e'?)~H,(Q)



Butterworth Filter Design with Impulse
Invariance

027/Q

0.89125<| H(e'")|<1, 0< w027
| H(e'”)[<0.17738, 037 < w|<rx

=0.6283/0.7032

=1().8935

0.79433

What is Q.7 Value of N?
—— 1 . .
| H (jQ)|"= — 1S monotonic
l il (Q I/QL, )- =
: 1 -
| H (jOQ) | = —— = (0.89125)" = 0.79433
1+(027/Q,) a
; l ; 0.03146
| H_(j) = = (0.17738)* =0.03146 O —
1+(0.37/ Q_L )" 0 1 % 3
(0.27/Q.)* =1.25893-1=0.25893 Q/Q,
=5 2N{log(0.27)—log .} = —0.58683 = 2N{-0.20182—logQ_}=-0.58683
(0.37/Q,)*" =31.78269-1=30.78269
= 2N{log(0.37)-logQ,} =1.50219 = 2N{-0.02573-logQ }=1.50219
N=39 = N=6 —0.20182-log Q2 =—0.58683/12 = Q_=0.7032
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Butterworth Filter Design with

Impulse Invariance

e @ M -

0.89125<| H(e’”) |1, 05w|£02x 3
| H (e iy £0.17738, 03r<lw|sx s
| _ - Il

H_(s)H (—s)= — N=6 £ =0.7032

b+(sid 7€) .
s, =0.7032 e Cprﬂ(Qk + 5)1 k=0,12,---11

[ 12 | .

= 0
H_(s)
- 0.12093
(s +0.36405 +0.4945)(s> +0.99455 + 0.4945)(s> +1.35855 = 0.4945)
Length= _

07032 ~

0.79433

Im

g
hin]|=T,h (nT),)

2y L =& Z

ool s oo
h(t)="1 Z,;,l Ae*r, t20
| 0. <0

Re

5
S
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-one mapping

. or whole right s-plane to

S WS

. we need a one-to

Bilinear Transform
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, 2
JQ—f<

Bilinear Transform

1 — e

1+ etw

-2

sinw/2

cosw/2

)

2
= ) = ftan

(w/2)
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Bilinear Transform

2 f Q2
o () = —tan d or w= 2arctan—T
T ? 2

e Preserves stability, but not shape (warping of the frequency axis)

n-

(€]

0F

—4m/T /T 0 @ 20T 4/'T



Bilinear Transform

Perform frequency prewarp to obtain the
corresponding analog filter specs (pick any T)

Design the analog filter H.(s) using any one of
the analog filter prototypes.

Transform Hc(s) to H(z).



Bilinear Transform

Transformation of filters and specs:

I 08 06 04
[H_(i€2)]

O .................
3:0.6 ................. ....... . .................

=i\ ) IR . FE——

0.2
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Summary on digital filter design with

Bilinear Transformation:
1. Digital filter specification: @, ®s,0,and o,

2. Transformation of requirements to the digital filter
to the analogue filter:

O =2 tan &

T 2

»0, > Q o, >Q oJando,
3. The analogue filter design: H,(p)

4. The analogue filter conversion to the digital filter:

H(z) =H, (p)‘ngi

T1+z71
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Comparision between Bilinear

Transformation and Impulse Invariance

H, (@)

1

0971
0.8
071
0.6
057
047
03
0.27
0.1

0

2né1 order digital Butterworth |
filters designed for same
_cutoff frequency ®,

«—RBilinear Transformation’
“=—Impulse Invariance |

0

0.5 1 1.5 2 2.5 3
@, (rad/sample)
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